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ABSTRACT 

Recursive forward dynamics algorithms are developed for an arbitrary number of robot arms moving 

a commonly held object. The multiarm forward dynamics problem is to find the angular accelerations at 

the joints and the contact forces that the arms impart to the task object. The problem also involves finding 

the acceleration of this object. The multiarm forward dynamics solutions provide a thorough physical and 

mathematical understanding of the way several arms behave in response to a set of applied joint moments. 

Such an understanding simplifies and guides the subsequent control design and experimentation process. 

The forward dynamics algorithms also provide the necessary analytical foundation for conducting analysis 

and simulation studies. The multiarm algorithms are based on the filtering and smoothing approach 

recently advanced by the author [I] for single-arm dynamics, and they can be built up modularly from 

the single-arm algorithms. The algorithms compute recursively the joint-angle accelerations, the contact 

forces and the task-object accelerations. Algorithms are also developed to  evaluate in closed form the 

linear transformations from the active joint moments to the joint-angle accelerations, to the task-object 

accelerations and to the task-object contact forces. A possible computing architecture is presented as a 

precursor to a more complete investigation of the computational performance of the dynamics algorithms. 
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1. INTRODUCTION 

This report solves the problem of forward dynamics for multiple possibly redundant robot arms oper- 

ating on a common task object. By doing this, it extends to a multiarm closed-chain system the approach 

of spatially recursive filtering and smoothing introduced by the author in [l] and used there to solve 

single-arm dynamics problems. Cooperating arms are useful in tasks that require carrying heavy loads 

and manipulating cumbersome objects. Such tasks could exceed the force and work envelope limits of 

single arms. The problem of forward dynamics is to find the task-object mass center acceleration and the 

contact forces, given the active joint moments. The forward dynamics problem also includes finding the 

corresponding set of joint-angle accelerations. 

The main motivation for solving the forward dynamics problem is to understand the dynamical be- 

havior of the multiple-arm system. Such an understanding makes it easier to develop more insightful 

control algorithms. This is true, in particular, if the aim is to use simple control schemes. Typically, the 

simpler the control scheme the better the understanding of the plant model has to be. A fundamental 

understanding of the forward dynamics problem also makes it easier to conduct experimental studies and 

to correct possible anomalies. 

The spatially recursive filtering and smoothing methods of [l], when extended to multiple arms, lead to 

a very simple statement and solution of the forward dynamics problem. In this solution, almost every com- 

putational step has a corresponding geometrical or physical interpretation. This provides valuable insights 

into how the underlying physics and geometry of the problem affect the resulting algorithm structure. An- 

other feature of the filtering and smoothing approach is that it organizes the computations required to solve 

the forward dynamics problem into a highly developed and well-understood framework. This framework 

(which includes the Riccati equation, Kalman gains, covariances, prediction, correction, etc.) has been 

highly successful in other application areas. This report does not aim to advance the algorithms for their 

computational efficiency, since the main contribution of the report is to enhance analytical understanding 

of the way multiple arms behave dynamically. Results on computational performance of the algorithms 

will be reported subsequently. 

The forward dynamics solution consists of several parallel sequences, one for each arm. Each of the 

sequences consists of the following five stages: 

1. An inward filtering stage begins at the task object and proceeds sequentially from link to link to the 

base. This first stage is identical to that in the single-arm problem in [l]. It uses the active joint 

moments to compute a set of filtered state (spatial force) estimates and a residual error process. It 

also generates a set of Kalman gains. 1 
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2. Outward smoothing begins at the base and terminates at the task-object contact points. This second 

stage uses the residual process emerging from the first stage to compute the free-tip accelerations and 

the corresponding inertial D’Alembert forces that would exist in the absence of the task object. It also 

computes the equivalent spatial inertia of the multiple-arm system (minus the task object) as seen 

from the arm tips. 

3. Computation of the contact forces imparted to the task object by the arms is the third stage. Com- 

munication between the parallel sequences for each of the arms occurs in this stage. This is the only 

place in the five-stage computation in which interaction between the simultaneous (one per arm) se- 

quences occurs. As an option, the contact forces can be used to compute the task-object mass center 

accelerations. 

4. Inward filtering computes corrections (due to the contact forces) to the residual process resulting from 

the first step above. 

5 .  Outward smoothing computes the desired joint-angle accelerations based on the corrected residual 

process. This final smoothing stage is identical to the smoothing stage in the single-arm solution [l]. 

This five-stage solution for several arms is an extension of the twestage solution for single arms in [l]. 

The first and the fifth stage above coincide with the single-arm solution. These two stages are mutually 

adjoint [2]. The second, third, and fourth stages involve additional computations to evaluate the contact 

forces and their effect on the residual process. The second and fourth stages are also mutually adjoint. The 

single-arm solutions of [l] provide the necessary building blocks to solve the multiple-arm problem. If the 

closed chain is broken (if the task object is dropped for example) the multiple-arm solution can be modified 

easily. The intermediate steps 2 - 4 above, in which the contact forces and their effects are computed, are 

not performed. Elimination of these three steps in the multiple-arm solution results in solving the forward 

dynamics problem for several independent, mechanically decoupled arms. 

If the above filtering/smoothing/filtering/smoothing process is performed symbolically, a closed-form 

equation results, which involves what will be referred to as an influence matrix. This matrix relates the 

active joint moments to the joint-angle accelerations. Similar matrices relate the active joint moments to 

the contact forces and to the task-object mass center acceleration. This is in an extension of the results of 

[l] that produce a dosed-form expression for the inverse of the composite multilink system inertia matrix 

in terms of smoothed state and co-state estimation error covariances. The influence matrices involved in 

the multiple-arm system can also be evaluated recursively in terms of the estimation error covariances. 

The remaining sections of the report describe respectively the multiarm closed-chain system, states 
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and co-states, constraints, recursive kinematics and dynamics, two-point boundary-value problem, for- 

ward dynamics, algorithm architecture, closed-form influence matrices, relationship to other work, and 

concluding remarks. 

2. CONFIGURATION AND PROBLEM STATEMENT 

Consider the closed-chain mechanical system illustrated in Fig. 2.1. The system is intended to 

represent several arms moving a commonly held task object. The number of arms is denoted by N A .  Each 

of the arms has N links numbered 1 , .  . . , N and N joints also numbered 1 , .  . . , N .  The arms are identified 

with the index i. The last joint of each of the arms is labeled N and is attached to an immobile base. The 

mass center of the task object is denoted by the symbol C. Each of the arms is attached to the task object 

at a contact point labeled 0. Perfect attachment is assumed. This implies that there is no relative motion 

at  the contact points and that there is perfect transmission of constraint forces between the arms and the 

t a sk  object. There is no loss of generality due to this assumption because extension is simple to situations 

in which relative motion between the task-object and the arms is allowed at the contact points. Each of 

the contact points is at  a fixed and known location on the task object. 

FIXED 

... 

FIXED a 
BASE 

Fig. 2.1 Multiple Arms Holding a Common Task Object 

Let link k in the i th arm be characterized by a rotational inertia tensor l , ( k )  about joint k ,  a mass 

p , ( k ) ,  a vector L,(k)  from joint k to joint k - 1, and a vector c ; ( k )  from joint k to the link k mass center. 

The 6 x 6 spatial inertia matrix [l] is defined as 

This matrix summarizes both the translational and rotational inertia properties of link k about joint k.  
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The matrix U is the 3 x 3 unit matrix. The composite 6NA x 6NA matrix 

characterizes the combined inertia properties of all (one per arm) links k in the overall multiarm system. 

Let joint k in the ith arm be characterized by a unit vector hi(k) along its axis of rotation. The joints 

are assumed to be rotational, although joints allowing relative translation between adjoining links can be 

t handled easily with the same approach. The 6-dimensional unit vectors h;(k) can be used to obtain the 

scalar joint moment from the 6dimensional vector of spatial (rotational plus linear) forces. Define also the 

composite vector ~ ( k )  = [hT(k) ,  . . . , hgA(k)]. 

Let r;(k)  be the active moment applied about the axis of joint k. Define the NA-dimensional vector 

T ( k )  = [ r l ( k ) ,  . . . , q ~ A ( k ) ] .  Let O;(k) be the corresponding joint angle, which is positive in the right hand 

sense about h;(k) .  Define the NA-dimensional vector 63(k) = [OI(k) ,  . . . , 0 ~ A ( k ) ] .  The corresponding 

joint-angle velocities and accelerations are defined by 8 ( k )  and 6 ( k ) .  

I The objective is to define a recursive method for computation of the joint-angle accelerations @ ( I C ) ,  

the task-object mass center acceleration, and the contact forces on the task object. This problem is to be 

solved given the values of Q ( k ) ,  0 ( k ) ,  M ( k ) ,  Li(k), H ( k )  and T ( k ) .  
I 

3. STATES AND CO-STATES 

At any given time instant, the relationship between applied joint moments and the resulting joint-angle 

accelerations is linear. In the single-arm analysis of [l], a spatially recursive state space model has been 

introduced to characterize this relationship. The state space approach can also be used for the multiple-arm 

problem as outlined below. 

The state space model involves the definition, at each joint k, of a 6 x 1 state vector z(k) equal to 

the spatial force (11 on the negative side, toward the arm tip, of that joint. For the ith arm, this spatial 

force is denoted by z;(k). This is a vector of three moments and three linear forces acting on the ith arm 

link k and due to ith arm link k + 1. The subscript i implies that the associated state q(k) corresponds 

to the ith arm. Let z(k) = [zl(k), . . . , z ~ A ( k ) ]  be a composite 6NA x 1 vector formed by the NA spatial 

forces z;(k). The active joint moments T ( k )  = [ r ~ ( k ) ,  . . . , rNA(k)l and the spatial forces z(k) are related 

by T ( k )  = H ( k ) z ( k ) .  

The spatial velocity [l] on the negative side of joint k is denoted by u,(k) .  This is a 6 x 1 vector of 

three angular velocities and three linear velocities. The index i is again used to denote the ith arm. The 

composite velocity V ( k )  = [v l (k) ,  . . . , V N A ( ~ ) ]  is a 6NA x 1 vector made up of the spatial velocities ui(k) 
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at joint k of each of the arms. 

A spatial acceleration X ( k )  is also defined at each joint. The spatial acceleration is recognized as a 

6 x 1 co-state vector of the type commonly encountered in optimal control and estimation problems [l]. 

The spatial accelerations Xi(k)  are obtained by proper time differentiation [l] of the spatial velocities v,(k) .  

The composite acceleration X(k)  = [ X l ( k ) ,  . . .  ANA(^)] is a 6 N A  x 1 vector made up of the accelerations 

A@). 

One of the key ideas introduced in [l] is the use of the states and co-states defined above to propagate 

recursively the spatial forces and accelerations. This propagation takes place between distinct spatial 

locations (between the tip and base, for example). The following 6 x 6 transition matrix 

is used to propagate forces (states) inwardly from the task object to the base [l]. Its transpose @(k, k - 1) 

can be used to propagate velocities and accelerations (co-states) in an outward direction. In both of these 

matrices, L;(k,j) is the vector from joint k to joint j ,  and L;(k,j) denotes the cross-product operation 

L,(k,j) x (-). This matrix satisfies the following properties: 

N 

which state that the matrix satisfies the semigroup property, that the matrix can be inverted by inter- 

changing its two arguments, and that the matrix becomes the identity if its two arguments coincide. 

The composite multiple-arm transition matrix 

(3.1) 

0 )  

91 (k, j )  * * * 

( 0 ' * - *  ' ' 9 N A  (k7j) 
+(k,j) = 

is used to express a simultaneous transition from joint j to joint k in all of the arms. This composite 

transition matrix will be used to describe simultaneous recursions (one recursion per arm) to propagate 

forces, velocities, and accelerations for the multiple-arm system. 

4. FORCE, VELOCITY, AND ACCELERATION CONSTRAINTS 

This section summarizes the constraints that the contact forces, velocities, and accelerations must 

satisfy because the task object is rigid. In addition, these constraints are combined for use in subsequent 

sections of the report. The constraints can be summarized as follows: 

Force Balance z(C) = A(C,O)z(O) 
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Velocity Balance V ( 0 )  = AT(C,  O)u(C) 

Acceleration Balance X(0) = AT(C,O)a(C) 

Task-Object Spatial Motion z(C) = M(C)a(C)  + b ( C )  

in which the 6 x 6 N A  matrix A(C, 0) is defined as 

Equation (4.1) states that the net spatial force z(C) acting at the task-object mass center equals the 

weighted sum of the contact forces z,(O) at the contact points. The contact forces must be propagated from 

the contact points to the task-object mass center by means of the matrices & ( C , O )  in the transformation 

A(C,O). 
Equation (4.2) relates the composite spatial velocity V(0)  = [ul(O),  . . . , U N A  (O)] at the contact points 

and the spatial velocity u ( C )  at the task-object mass center. This equation follows from the observation 

that u;(O) = q5T(C,O)u(C).  These observations are true because the task object is a rigid body. Equation 

(4.3), relating the composite acceleration X(0) at the contact points and the spatial acceleration a(C) at 

the task-object mass center, follows [l] from differentiating Eq. (4.2) with respect to time. 

Equation (4.4) is the equation of spatial (translational and rotational) motion of the task object about 

its mass center. It is expressed in terms of the spatial inertia M(C) of the task object and the spatial bias 

force b ( C )  acting on this object. 

Equations (4.1), (4.3), and (4.4) can be combined into 

~ ( o )  = A ~ ( c , o ) M - ~ ( c ) [ A ( c ,  O)Z(O) - b ( c ) ]  (4.6) 

This equation relates the spatial force z(0) and the spatial acceleration X(0) at the contact points. It will 

be used in Sec. 8 to obtain a solution to the multiple-arm forward dynamics problem. 

5. RECURSIVE KINEMATICS 

This section provides the kinematic relationships necessary to determine velocities and accelerations 

for the entire system, given only partial (joint-angle velocities and accelerations, for instance) velocity and 

acceleration information. This will allow the focus of the forward dynamics problem solved in Sec. 8 to be 

that of determining joint-angle accelerations from the applied joint moments. Other accelerations, such as 

task-object mass center accelerations, can then be determined by combining the results of Sec. 8 and of 

this section. This section solves the following four closely related problems: 
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1. Determine the spatial velocity at  each of the joints of the arms, given the joint-angle velocities (RE- 

SULTS 5.1 and 5.2). 

2. Determine the velocity of the task-object mass center, given the joint-angle velocities (RESULT 5.3). 

3. Determine the joint-angle velocities, given the task-object mass center velocity (RESULTS 5.4 and 

5.5). 

4. Determine a set of constrained joint-angle velocities, given a set of possibly unconstrained joint-angle 

velocities (RESULT 5.6). 

Similar relationships (RESULT 5.7) are also outlined among the spatial accelerations, the joint-angle 

accelerations, and the task-object mass center acceleration. 

R E S U L T  

joint-angle velocities 6 ( k )  = [ f & ( k ) ,  . . . , e p ~ ~ ( k ) ]  by means of the following outward recursion 

5 . 1 .  The sequence ofspatid velocities v ( k )  = [ w l ( k ) ,  . . . , w N A ( k ) ]  can be obtained from the 

LOOP k = N , .  . . ) 1; 

V(k) = r$T(k + l , k ) V ( k  + 1) + H T ( k ) 6 ( k )  

END LOOP; 

with the terminal velocity V(N + 1) = 0. This is an outward sequence that starts a t  the base of the 

arms and goes to joint 1 of each of the arms. There are N A  parallel sequences generated by the above 

equations, one for each arm. The composite notation V(k) = [ w l ( k ) ,  . . . , w N A ( ~ ) ]  involving N A  vectors 

is used to describe N A  parallel sequences with a single set of recursive equations. The spatial velocity 

V(0)  = q5T(l,0)V(1) at  the contact points can be computed after the end of the sequence. 

The above is a simple extension of the results of [l] on single-arm recursive kinematics. Equation (5.1) 

can be cast in more compact notation. To this end, define the lower triangular matrix 

Similarly, define the matrices H = diag[H(l), . . . , H(N)] and BT = [ + T ( l , O ) , O , .  . . ,O] .  

R E S U L T  5 . 2 .  Thespatial velocitiesv = [V(l) ,  . . . ,  V ( N ) ]  are 

I 
I 

V = Q T H T 6  

where 6 = [6(l), . . . , b ( N ) ] .  At the contact points, the spatial velocity is 
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Proof:  Equation (5.1) implies that V ( k )  = EEL t ,5T( i ,k )HT( i )6 ( i ) .  This proves Eq. (5.2). Observe that 

V(0)  = t,5T(l,0)V(1) to prove Eq. (5.3). 

The contact point velocities V(0) that emerge from the above are not necessarily compatible with the 

condition that the task object be a rigid body. To enforce this condition, the velocity balance constraint 

of Eq. (4.2) must be imposed. This constraint states that the velocity V(0)  of the contact points and the 

velocity u ( C )  of the task-object mass center are related by V(0)  = AT(C,O)u(C). Use of this in Eq. (5.3) 

leads to 

~ 

BTQTHT6 = AT(C,O)u(C) (5.4) 

This constraint is a linear system of 6 N A  scalar equations in the 6 N A  unknown joint-angle velocities. The 

constraint can be used to determine the task-object mass center velocity from the joint-angle velocities. 

RESULT 5.3. The velocity v ( C )  of the task-object mass center can be determined from 

u(C) = [A(C,O)AT(C,O)]-lA(C,O)B T Q T H T '  8 

I The prescribed joint-angle velocities must satisfy the constraint of Eq. (5.4). 

Proof :  Premultiply Eq. (5.4) by A and solve for u(C). 

Now consider the inverse problem of obtaining a set of joint-angle velocities 6,  given the spatial 

velocity u ( C )  of the task object. There are two approaches to this problem. The first approach assumes 

that none of the arms is redundant. It also assumes that none of the arms is at a Jacobian singularity. 

The second approach leads to a minimum-norm solution, in which the joint-angle velocity vector eo that 

satisfies the constraint of Eq. (5.4) and that has smallest norm is determined. These two solutions are 

outlined in Results 5.4 and 5.5 below. 

R E S U L T  5.4. The joint-angle velocity 6 and the task-object m a s  center velocity u(C) are related by 

S = (BTQTHT)-'AT(C,O)u(C) 

This solution follows from Eq. (5.4) if the matrix BTQTHT is invertible. For redundant arms, there 

may be more than 6 joint angles per arm. The linear system of scalar equations summarized by Eq. (5.4) 

therefore may have more unknowns than equations. The solution to E!q. (5.4) may not be unique. An 

alternative and unique solution (that also applies to redundant arms) is provided below. This solution is 

one which minimizes the norm of the joint-angle velocity vector 6 subject to the constraint of Eq. (5.4). 

If the matrix BTQTHT is invertible, then the minimum-norm solution reduces to the simpler solution of 

Result 5.4. 
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I RESULT 5 . 5 .  The joint-angle velocities 6, of smallest norm satisfying the constraint of Eq. (5.4) are 
I 

I I 6, = HQBQ-~(O)A~(O,C)V(~) (5.5) 

in which Q(0) is defined as 

The corresponding spatial velocity vector is V = Q T H T b o .  The minimum-norm solution can also be 

generated recursively by means of the ou tward/inward sequence 

LOOP k = N,.  . . , I ;  

END LOOP; 

with the terminal condition Q ( N  + 1) = 0. The velocity covariance Q(0) = 4T(l,0)Q(l)4(l,0) a t  the 

contact points is computed a t  the end of this outward sequence. This is used to initialize the inward 

sequence 

q o )  = Q - ~ ( O ) A ~ ( C , O ) ~ ( C )  

LOOP k = 1 , .  . . , N ;  

X ( k )  = + ( k ,  k - 1 ) X ( k  - 1 )  

6 , ( k )  = H ( k ) X ( k )  

6 , ( k )  = 6 ( k )  - 6 , ( k )  

END LOOP; 

(5.8) 

Tam,. vector 0, of m--iimum norm, as well as the error 0, (the difference "etween unconstrained an( 

constrained join t-angle velocities), result from this outward sequence. 

Proof:  Use standard techniques for finding minimum-norm solutions to show Eq. (5.5). Observe that Q(0) 

defined in Eq. (5.6) can be computed by means of Eq. (5.7). To show Eq. (5.8), define the composite state 

as X = [X(l), . . . , X ( N ) ] .  Observe that X = QBQ-lAT~(C)  and use the transition matrix properties, in 

Eq. (3.1), of the matrix q5 in Q. 

I 

, 

i 
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The problem is now addressed of determining a set of constrained joint-angle velocities 0,) given a set 

of possibly unconstrained joint-angle velocities 8. This problem arises, for example, if joint-angle velocities 

have been computed independently for each of the arms, without taking into account the mechanical 

coupling due to the task object. The solution to this problem is summarized in the following result, which 

is obtained by combining Results 5.1, 5.3, and 5.5 above. 

RESULT 5.6. A set ofjoint-angle velocities bo, which satisfy the constraint of Eq. (5.4) that the task 

object be rigid, can be obtained from a set of possibly unconstrained joint-angle velocities Q by means of 

the relationship 

bo = H Q P B ( B ~  Q B )  - l ~ T  ( A A ~ )  aPT e 

The constrained joint-angle velocities Q,(k)  can be found recursively from the unconstrained joint-angle 

velocities 6 ( k )  by means of the following outward/inward sequence: 

1. Use Eq. (5.1) to determine the contact point velocities V(0) .  Use Eq. (5.7) to determine the contact 

point velocity covariance. Do both of these with an outward recursion. 

2. Use Result 5.3 to determine the task-object mass center velocity. 

3. Use Eq. (5.8) to determine the joint-angle accelerations of smallest norm. 

Spatial Accelerations 

The above analysis applies to the spatial velocities. A very similar analysis applies to  the sequence 

of spatial accelerations. Because of this similarity, only the results are presented without including the 

detailed analysis that leads to the results. 

The composite spatial acceleration vector X = [X(1), . . . , X(N)] at all of the joints can be generated by 

means of 

x = @(H% + q )  

At the contact points 0, the spatial acceleration is 

X(0) = B%*(H*ij + q )  

The acceleration vector can also be generated recursively by 

LOOP k = N , .  . . , 1; 



END LOOP; 

with the terminal condition X(N + 1) = 0. The acceleration X(0) at the contact points can be computed 

from X(0) = ~$~(1)0)A( l ) .  The symbol q(k) denotes the spatial acceleration bias [l] due to coriolis and 

other nonlinear velocity-dependent effects. This bias term is assumed to  have been computed prior to 

solving the forward dynamics problem. 

The joint-angle accelerations 0 satisfy the constraints 

If the matrix BTQT HT is invertible, then 

O = (BTQTHT)-'[AT(C,O)X(C) - B T T  @ q]  

If BT QT HT is not invertible, then use the minimum-norm solution 

The solution of minimum norm 0, can be obtained from a possibly unconstrained set of joint-angle 

accelerations 0 by means of 

0, = H Q B ( B ~ Q B ) - ~ A ~  ( A A ~ ) -  A B ~ Q ~  H ~ O  

The minimum-norm solution for joint-angle accelerations can also be generated recursively by a set of 

equations similar to those in Result 5.5. 

6. RECURSIVE DYNAMICS 

The sequence of spatial forces z(k) satisfies the recursive equations: 

LOOP k = 1 , .  . . ) N ;  

z(k) = C $ ( I C )  IC - l ) s ( k  - 1) + M(k)X(k)  + b(k)  

T ( k )  = H(IC)z(k) 

END LOOP; 

with the initial state z(0) at the contact points. This initial state corresponds to the contact forces 

imparted to the task object by the arms. The contact forces are assumed to be initially unknown. They 

are determined as part of the solution to the forward dynamics problem, as explained in Sec. 8. 
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The above recursive dynamics equations are derived in detail in [l]. Only an outline of their derivation 

is presented here. The state propagation equation follows [l] by writing the equations of rotational and 

translational motion for a set of typical links k, one for each arm, and by applying Newton’s third law 

at joints k. The output equation represents the state-to-output map that projects the 6NA-dimensional 

state vector z(k) into the set of scalars T ( k ) .  The equations compute recursively the spatial forces z(k) 

for the set of parallel inward sequences, one along each arm. The sequences begin at the contact points 

and terminate at the base. The sequences produce as output the active joint moments T ( k )  along the joint 

axes. The spatial accelerations X ( k )  are viewed as a known input to the sequence. The spatial bias forces 

b ( k )  defined in [l] are also assumed to be known. 

The relationship between the initial state, the spatial accelerations, and the output joint moments can 

be expressed in the more compact notation 

1 T = H@Bz(O) + H@(MX + b) 

in which T = [T(l), . . . ,T(N)] and X = [X(1), . . . ,X(N)] are respectively the vector of active joint moments 
l and the vector of spatial accelerations. 

~ 7. TWO-POINT BOUNDARY-VALUE PROBLEM 

The sequences of forces z(k) and accelerations X ( k )  satisfy the following two-point boundary-value 

problem: 

~ ( o )  = A~M-~(c ) [Az(o )  - b(c)] 

LOOP k = 1 , .  . . , N ;  

~ ( k )  = #(k, k - l ) ~ ( k  - 1) + M(k)X(k)  + b(k)  

T ( k )  = H ( k ) z ( k )  

END LOOP; 

X ( N )  = H T ( N ) C i ( N )  

LOOP k = N , .  . . , l ;  

X(k - 1) = 4 T ( k , k  - l )X(k )  + H T ( k  - 1)8(k - 1) + q(k  - 1) 

END LOOP; 
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This is a two-point boundary-value problem in the sense that the boundary conditions of Eqs. (7.1) and 

(7.2) are satisfied at two sets of points: the contact points 0 where the task object is attached to the arms, 

and the support points where the arms are mounted to the immobile base. The boundary condition of 

Eq. (7.1) can be said to be mixed, because it requires that the states and co-states be constrained by a 

linear relationship at the task-object contact points. The relationship between states and co-states has 

been derived in Eq. (4.6) from the spatial equation of motion for the task object about its mass center 

and from the force and acceleration constraints due to rigidity of the task object. When combined with 

Eq. (7.2)) Eq. (7.1) defines a set of mixed-fixed boundary conditions. These boundary conditions differ 

from the free-fixed conditions of the single-arm problem studied in [l]. There, the boundary conditions 

correspond to a situation in which the state vanishes at  the arm tips and the co-state vanishes at the base. 

Consequently, the mixed-fixed boundary-value problem above has some features that are not present in the 

free-fixed case of [ 11. Nonetheless, two-point boundary-value problems in which the states and co-states 

are related at  the boundary have been investigated in [6]. The same general methods of [6] are applied in 

the following section to find a recursive solution to the two-point boundary-value problem. 

LOOP k = 1 , .  . . , N ;  

i 

8. FORWARD DYNAMICS 

The aim here is to solve the two-point boundary-value problem by means of the recursive methods of 

filtering and smoothing. These algorithms are the extension to closed-chain multiple arms of the techniques 

advanced in [l] for single arms. 

R E S U L T  8.1.  The joint-angle accelerations 6,  the task-object contact forces s(O), and the task-object 

acceleration a ( C )  can be computed by means of the following five-stage sequence: 
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Filtered State Z F R E E ( ~ )  = $(k, k - ~ ) Z F R E E ( ~  - 1) + G ( k ,  k - l)r(k - 1) + b(k) (8.1) 

Spatial Inertia P ( k )  = t,b(k, k - 1)P(k - l)+T(k, k - 1) + M ( k )  

Joint Inertia D(k )  = H ( k ) P ( k ) H T ( k )  

Free Innovations e F R E E  (IC) = D- ' / ' ( I c ) [T (~)  - H ( I C ) Z F R E E ( ~ ) ]  

END LOOP; 

2. Smoothing of Free Innovations to Compute Free Tip Accelerations and D'Alembert Forces 

This stage takes the sequence of free innovations emerging from the filter and produces the free joint- 

angle accelerations G F R B E  (k) that would, in the absence of the task object, result from application of the 

active joint moments. It also computes the corresponding spatial accelerations X F R E E  (k). 

Terminal Conditions X F R E E  ( N  + 1) = 0; h(N + 1) = 0 

I LOOP IC = N ,  . . . , 1; 

I Joint-Angle Acceleration  FREE(^) = D-l/'(k)eFREE(k) - G T ( k  + ~ , ~ ) X F R E E ( ~  + 1) 

END LOOP; 

I The free tip accelerations X F R E E ( O )  and the free co-state covariance h(0) emerge a t  the end of  this stage. 

These can be used to determine the D'Alembert forces 

due to the free tip accelerations. For simplicity, the bias acceleration q ( k )  has been set to zero in arriving 

at Eq. (8.2). The algorithms in [I] show how to account for this acceleration. i 

3. Contact Forces and Task-Object Accelerations From Free Tip Accelerations 

and Task-Object Bias Force 

The contact forces z(0) are 

Contact Forces z(0) = SI-' [ X F R E E  (0)  + ATM-' (C)b(C)] 
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in which !'l = ATM-'(C)A + A(0). The outputs of this stage are the contact forces acting on the task 

object. It is assumed that the matrix ATM-'(C)A involved in the matrix s2 has been computed in advance 

and is available from storage. The corresponding task-object accelerations are obtained from 

~ ( c )  = M-'(c)[As(o) - qc) ]  
If only the task-object contact forces and accelerations are desired, stop here. The remaining two stages 

are needed only if the joint-angle accelerations are required. 

4. Filterina o f  Contact Forces to Correct Innovations 

This stage determines the incremental changes in the spatial force estimates at  all of the joints due to 

the forces s(0) at the task-object contact points. I t  also modifies the residual process to account for these 

con tact forces. 

Initial State Increment Sz(0) = z(0) 

LOOP k = 1 , .  . . , N ;  

State Increment 6 x ( k )  = $(k, k - I )Sz(k  - I) 

Modified Innovations e(k)  = eFREE(k) - D-' / ' (k )H(k)bz (k )  (8.4) 

END LOOP; 

5. Smoothing of Modified Innovations to  Compute Joint-Angle Accelerations 

This last stage is identical to the smoothing stage for the single-arm case of 1-11. I t  consists of an 

outward sequence that processes the modified residual process in order to obtain the closed-chain joint- 

angle accelerations. 

Terminal Co-State X(N + 1) = O 

LOOP k = N ,  . . . , l ;  

Joint-Angle Accelerations 8 ( k )  = D-'/'(k)e(k) - G*(k + 1, k)X(k  + 1) 

(8 .5 )  Co-State ~ ( k )  = $*(IC + 1, ~ c ) ~ ( k  + 1) + ~ * ( k ) O ( k )  

END LOOP; 

Pro0 f :  The proof is based on the sweep method of [6], suitably modified for problems in which the states 

and co-states are constrained by a linear relationship at one of the boundaries. This method begins with 

the assumption that the states and co-states are related by 

z(k) = ZFREE(k) + 6 z ( k )  + P ( k ) [ X F R E E ( k )  + SX(k)]  (8.6) 
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The filtered state estimate is composed of two solutions: (1) a nominal solution Z ~ R E E ( ~ )  that satisfies 

the filtering equations with “free” initial conditions Z F R E E ( O )  = 0. This solution is the sequence of filtered 

state estimates that would be obtained if the task object were not present and the arms were therefore 

not mechanically coupled; (2) a correction Sz(k )  to the filtered state estimate due to the nonzero task- 

object contact forces z(0). These contact forces do not become known until completion of the third stage. 

Similarly, the co-state solution is partitioned into a nominal component X F R E E  (k) and an increment SX(lc) 

due to the nonzero contact forces s(0). The nominal co-states X ~ R E E ( ~ )  correspond to the problem that 

would arise if the arms were mechanically decoupled, whereas the incremental correction SX(lc) is due to 

the presence of the task object. 

Substitution of Eq. (8.6) in the two-point boundary-value problem of Sec. 7 implies that: Z F R E E ( ~ )  

and P ( k )  satisfy Eq. (8.1); the filtered state increments S z ( k )  satisfy Eq. (8.4); the nominal co-states 

satisfy Eq. (8.2); and the total co-states satisfy Eq. (8.5). The total co-states are defined as the sum of 

the nominal co-states and the co-state increments. 

The unknown initial condition z(0) is determined by first observing that 

~ F R E E ( O )  + Sz(0) + P(O)[XFREE(O) + SX(o)] = z(0) 

To satisfy this boundary condition, let Z F R E E ( O )  = 0, P(0) = 0 and Sz(0) = ~ ( 0 ) .  Then, use Eq. (8.4) to 

obtain that the increments S e ( k )  to the innovations e F R E E ( k )  are given by 

in which +(k,rn) is defined as 
k 

i=m+l  

This matrix can be shown [l] to be the transition matrix for the Kalman filter going from the negative 

side of joint rn to the negative side of joint k. Joint k is assumed to be inboard, toward the base, of joint 

rn in this definition. 

Now, use Eq. (8.5) to obtain that the co-state increment at the contact points is given by 

SX(0) = -A(O)z(O) 

This together with the constraint of Eq. (4.6) implies that the contact forces are given by Eq. (8.3). 

This will be shown in more detail in Result 10.3. Equation (8.3) determines the contact forces s(0) in 

terms of the “free” contact accelerations X F R E E ( O )  and the bias force b ( C )  at the task-object mass center. 

The equation, immediately following Eq. (8.3), that determines the task-object accelerations follows by 

combining the constraints of Eqs. (4.1) and (4.4). 

16 



In Eq. (8.4), these contact forces are used to modify the free residual process eFREE that has been 

computed in Eq. (8.2).  The modified residual process e that emerges from Eq. (8.4) is used in Eq. (8.5), 

the smoothing equations of the last stage, to compute the closed-chain joint-angle accelerations. 

Linear Operator Notation 

To gain further insight on the forward dynamics algorithm, the preceding result can be recast in terms 

of linear operator notation [ 2 ] .  This is done by “integrating” the discrete difference equations in Eqs. 

(8.1)-(8.5) using the transition matrix $(k ,rn)  of the Kalman filter. To this end, define the composite 

matrices 

... 0 

The matrix Q can be viewed [2]  as a linear operator that characterizes the composite response (at all of 

the joints) of the Kalman filter. The matrix S is a shift operator, which will be used typically to account 

for one-step spatial “delays” that occur in Eq. (8.1)- (8.5), the discrete difference equations defining 

the filter and smoother. Define also the block diagonal matrices G = diag[G(l,O),  ..., G ( N , N  - l ) ] ,  

H = d i a g [ H ( l ) , .  . . , H ( N ) ] ,  and D = diag[D( l ) ,  . . . , D ( N ) ] .  

RESULT 

applied joint moments T by means of the following linear operator equation 

8 . 2 .  The closed-chain multiarm joint-angle accelerations 6 can be determined from the 

0 = ( I  - L ~ ) D - ~ / ~ ( I  - K R - ~  K ~ ) O - ~ / ~ ( I  - LIT 

in which L and K are lower triangular matrices defined as 

L = HQGS 

K = D - ~ / ~ H Q B  

and LT amd KT are their corresponding transpose matrices. For simplicity, the bias forces b and bias 

accelerations q are assumed to be zero. 

Proof :  Integrate the relationships in Eq. (8.1) to obtain Z F R E E ( ~ )  = Cfi: $(k,i + 1)G(i + l , i ) T ( i ) .  

This implies that 

eFREE = O-l i2 ( I  - L)T (8.8) 

in which eFREE is the free innovations process. Similarly, the smoothing equations of Eq. (8.2) imply that 
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x F R E E ( o )  = K ~ ~ F R E E  

in which KT = B T 3 T H T D - 1 / 2 .  This determines the contact point accelerations that would be there 

if the task object did not exist and the arms were therefore mechanically decoupled. The corresponding 

contact point forces are determined by the equation 

in which R = A(0) + ATM-l (C)A.  These contact forces are used as an initial condition in the fourth stage 

to compute the resulting forces at all of the joints. 

Note that Eq. (8.4) implies 6z = +Bs(O) in which 6z is the vector of filtered state increments due to 

the nonzero contact forces. This has a corresponding residual process increment of 6e = -D-1 /2H3Bz(0 ) .  

Hence, 

be = -Kz(O) 

The modified innovations process, defined as e = e F R E E  -I- 6e ,  is therefore given by 

Integrate Eq. (8 .5 ) ,  the last smoothing stage, to obtain 

(8.10) 

Put together Eqs. (8.8)-(8.10) to obtain the desired result. 

Satisfaction of Acceleration Constraints 
I The objective here is to verify that the constraints imposed on the closed-chain joint-angle accelerations 

by the presence of the task-object are satisfied by the accelerations computed in Results 8.1 and 8.2. 

RESULT 8.3. The closed-chain joint-angle accelerations computed by Results 8.1 and 8.2 satisfy the 

I constraint 

BTQTHT6 = ATa(C) 

in which a(C) is the acceleration of the task-object mass center 

Proof: Multiply Eq. (8.7) by BTQTHT to obtain 

I X(0) = B T 3 T H T D - 1 / 2 ( I  - K R - l K T ) e  

In arriving at  this, the identity (I - L)H@B = H 3 B  established in [2] has been used. However, the 

definition of K above implies that x(0) = ( I  - KTKR-l)KTeFREE. Since K T K  = A(0) and R = 
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h(0) +ATM-’(C)A, then x(0) = ATM-l(0)Az(O) in which the condition z(0) = R-’KTeFREE has been 

used. However, recall that the net component of force z(C) at the task-object mass center is defined by 

z(C) = Az(0) .  In addition, M-’(C)z(C) = a(C). These last three equations together imply the desired 

result. 

9. ALGORITHM ARCHITECTURE 

The architecture of the forward dynamics algorithms summarized by Results 8.1 and 8.2 is illustrated 

in Fig. 9.1. The algorithms can be subdivided into five major stages. 

I 
JOINT 
MOMENTS TASK-OWECT 

CONTACT FORCES 
AND ACCELERATIONS 

JOINT ANGLE 
ACCELERATIONS 

Fig. 9.1 Five-Stage Filtering and Smoothing Architecture 

The first is a filtering stage @that  begins at the tips of the arms. The task object is assumed not 

to exist. The filter computes a sequence of spatial force estimates that would exist for a free multiple-arm 

system unconstrained by the presence of the task object. There are several such sequences, one for each 

arm. 

The next three stages compute the modified residual process by means of the equation e = ( I  - 

KR-lKT)eFREE. The second @ and fourth @ stages are mutually adjoint, since they are defined 

respectively by the operator K and its corresponding transpose K T .  The second stage involves a smoothing 

operation KT on the residuals to obtain the contact point forces@. It also computes the corresponding 

free accelerations at the contact points that would exist if the arms were mechanically decoupled from 

each other. The contact forces are computed in the third stage. The contact forces are used as an initial 

condition by the fourth stage to determine a sequence of modified residuals@. 

The fifth stage @takes the modified residuals as an input and computes the sequence of joint-angle 

accelerations@. This smoothing stage begins at the base of the arms and terminates at the contact points. 

The first and fifth stages are mutually adjoint. 

A possible “spoked-wheel” computing architecture for the filtering and smoothing algorithms is illus- 

trated in Fig. 9.2. 
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I Fig. 9.2 Spoked- Wheel Computing Architecture Concept 
I 

The first stage describes parallel sequences 0, one per arm, that go from the task object to the base 

of the arms. The sequences are independent of each other. They can be implemented by means of separate 

computational processes that do not communicate with each other. The sequence in each arm is the same 

as would be used for single-arm forward dynamics. Therefore, if a computer program already exists to 

I 

, solve the forward dynamics problem for one arm, this program can be reproduced to solve the problem for 

multiple arms, The second stage also involves simultaneous parallel sequences 0. Each of the sequences 

goes from the base of an arm to the corresponding contact point where the same arm is attached to the 

task object. As in the first stage, they are independent of each other and can be implemented in parallel 

processes that do not communicate while the spatial recursions are being conducted. 

Interprocess communication@among arms occurs in order to compute the task-object contact forces 

and accelerations. This is the only place in the five-stage sequence that communication takes place. 

The fourth stage is very similar, but not identical, to the first stage. The main difference between 

the two is that the fourth stage does not require spatial inertia computations, whereas the first one does. 

Inspection of Eqs. (8.1) and (8.3) shows this difference. The fourth stage uses the contact forces to start 

simultaneous sequences @ that go from the task-object contact points to the arm base. The fifth and 

final stage @ is very similar to the second stage. The main difference between the two is that the fifth 

stage does not require evaluation of the co-state covariance matrix. This is made evident by comparison 

of Eqs. (8.2) and (8.5). Because there is no communication among the arms in the fourth and fifth stages, 

separate computational processes can be used. 

Predictor/Corrector Architecture to Determine Contact Forces 
I 

The aim here is to examine more thoroughly the third stage of the forward dynamics algorithm of 

Sec. 8. In this stage, the free tip accelerations X F R E E ( O )  and the corresponding co-state covariance A(O), 

that would exist at  the tips of the arms in the absence of the task object, are used to compute the contact 
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forces. This computation occurs in Eq. (8.3). This equation is used here as a starting point to explore in 

more detail the relationship between free accelerations and the contact forces. 

To this end, recall that the free D’Alembert forces Z F R E E ( O )  are defined as 

in which P = A-l(O).  These are the inertial forces that exist at the tips of the arms, due to  the free tip 

accelerations X F R E E .  The matrix P reflects the composite spatial inertia of the arms as seen from the arm 

tips. With these definitions at hand, Eq. (8.3) is recast in a form that shows that the contact forces are 

a weighted linear combination of the free tip forces X F R E E ( O )  and the bias force b ( C )  at the task-object 

mass center. This is done in the following result, which is obtained by rearranging Eq. (8.3). 

RESULT 9.1. The contact forces z(0) imparted by the arms on the task object can be expressed as 

in which 5 is the Kalman gain 

$ = P A ~ [ A P A ~  + M ( c ) ] - ]  

An alternative expression for the Kalman gah is 

= [A(O) + A T M - l ( C ) A ] - l A T M - l ( C )  

Equation (9.1) has the predictor/corrector architecture of the Kalman filter [l]. This is illustrated in 

Fig. 9.3. 

Fig. 9.3 Contact Forces as a Weighted Sum 
of Free Tip Forces and Task-Object Bias Force 

In this architecture, the contact forces z(0) are a weighted sum of the free tip forces and the bias 

force at  the task-object mass center. The Kalman gain can be viewed as an optimal weighting matrix that 
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combines the arm spatial inertia P (as seen from the arm tips) and the task-object inertia M(C) about 

its mass center. The free tip force Z F R E E ( O )  @ is a predicted estimate. This predicted estimate has an 

inherent error with a covariance P. The predicted estimate is multiplied by the matrix A @ to obtain 

the effect of the free tip force at  the task-object mass center. The multiplication by A can therefore be 

interpreted as a step in which the state estimate X F R E E ( O )  is projected into a measurement space defined 

at the task-object mass center. At this stage, there are two estimates for the spatial force that occurs at 

the mass center of the task object: (1) an estimate AZFREE(O) @due to the acceleration and inertia of 

the arms and (2) an estimate b(C)@due to the spatial force bias resulting from gyroscopic and other task- 

object velocity-dependent effects. Both of these estimates have a built-in uncertainty made quantitative 

by their respective estimation error covariances P and M(C). The second estimate can be viewed as a 

measurement that is used to update the first estimate. From these two estimates, an error term @ is 

created that, after being multiplied by the Kalman gain@, is used to correct the predicted estimate. The 

contact forces @result from this correction step. 

I 

Further physical insight is gained by examining the behavior of the Kalman gain and of the resulting 

estimates in two opposite extreme cases: (1) the spatial inertia M(C) of the task-object is large compared 

I to the arm spatial inertia P seen from the tips of the arms and (2) the inertia P is much larger than the 

inertia M(C). In the first case, the Kalman gain vanishes. Therefore, the correction term also vanishes. 

The contact forces z(0) are then equal to the free tip forces Z F R E E ( O ) .  In this situation, the task object 

does not move, and the contact forces are equal to those that correspond to the tips of the arms being 

rigidly attached to an immobile object. In the second case, in which the matrix P is much larger than 

the matrix M(C), the projection A$ of the Kalman gain along the state-to-measurement transformation 

A approaches the unit matrix. The corrected estimate Az(0) in the same direction depends only on the 

bias spatial force b(C), and the effect of the free tip forces vanishes. This follows by multiplying Eq. (9.1) 

by the state-to-measurement matrix A.  

PredictorlCorrector Architecture to Determine Task Ohiect Accelerations 

A similar predictor/corrector approach can be used to compute the task-object accelerations. To this 

end, define 

a B I A S  = - ~ - l ( C ) b ( c )  

These are the accelerations that the task-object mass center would undergo, if the task object were dis- 

connected from the arms. The bias acceleration is due only to the bias force b(C) .  The task-object mass 

center acceleration a ( C )  is given by a weighted linear combination of the bias acceleration QFREE and the 

free accelerations X F R E E ( O )  that would exist at  the tips of the arms, if the task object were not being held 
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and the arms were therefore mechanically decoupled. 

RESULT 9 . 2 .  The task-object mass center accelerations are 

in which 9 is the Kalman gain defined in Eq. (9.1). 

Proof :  Combine Eqs. (4.1), (4.4)) and (9.1) and solve for Q(C). 

This result states that the acceleration at  the task-object mass center can be computed by using a pre- 

dictor/corrector approach. The bias acceleration Q F R E E  plays the role of the predicted estimate, whereas 

the free tip acceleration X F R E E ( O )  at the arm tips plays the role of the measurement. An error term 

X F R E E ( O )  -  AT^^^^^ is used to correct the predicted estimate. This is the central feature of Eq. (9.2). 

The relative weighting given this error term is determined by the Kalman gain $. The corrected estimate, 

corresponding to the actual task-object mass center acceleration, is the sum of the bias acceleration and 

the appropriately weighted error term. 

Concluding Remarks About Architecture 

In the algorithm architecture of Figs. 9.1, 9.2, and 9.3, every computational step has a corresponding 

physical interpretation. This contributes toward elegance, efficiency, and reliability of the forward dynamics 

algorithms. For example, the Riccati equation propagates inertia. Another example is that the idea of 

prediction followed by correction is pervasive throughout the algorithm. It occurs in the fundamental 

single-arm solution that makes up the first two stages of the algorithm. It occurs again in going from 

the first two stages to the last three stages. The first two stages can be viewed as a prediction step in a 

more global computation in which the free joint-angle accelerations are first predicted assuming that the 

task object does not exist. The remaining three stages correct the joint-angle accelerations for the contact 

forces that, in fact, do exist and which have been disregarded in the first two stages. 

10. CLOSED-FORM MAPS FROM JOINT MOMENTS 

TO CONTACT FORCES AND JOINT-ANGLE ACCELERATIONS 

The aim here is to obtain in closed form the linear transformations from the active joint moments to 

the task-object contact forces and from the active joint moments to the joint-angle accelerations. These 

results are the extension to closed-chain multiple arms of the results obtained in [l] for inversion of the 

composite inertia matrix of open-chain single arms. In order to set the background for developing this 

extension, two of the results of [l] are first reviewed. This is done in Results 10.1 and 10.2, which follow. 
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R E S U L T  

object, by the active joint moments T ( i )  is 

1 0 . 1 .  The free joint-angle accelerations  FREE(^) produced, in the absence of the task 

N 

0 F R E E  (k) = wFREE ( k ,  i ) ~ ( i )  
i= 1 

i < k  

WFREE (k, i )  k ( k ) $ ( k , i  + 1)G(i + 1 , i )  

i > k  

G T ( k  + 1 ,  k)qbT(i, k + l ) g T ( i )  

g ( k )  = G T ( k  + 1 ,  k ) h ( k  + 1)1J(k + 1 ,  k )  - D-'(IC)H(k) 

The diagonal elements are WFREE(IC, I C )  = D-'(k)  + G T ( k  + 1 ,  k)A(IC + 1)G(k + 1 ,  k ) .  

Proof :  Only an outline of the proof is presented. Details are contained in [ l ] .  Recall that the free 

joint-angle accelerations  FREE and the active joint moments T are related by 

i-1 

  FREE(^) = D-' / ' ( i ) [T( i )  - x H ( i ) $ ( i , j  + 1)G( j  + l , j ) T ( j ) ]  (10.2) 
j= 1 

Substitution of Eq. (10.2) into Eq. (10.1) leads to the desired result. 

The kernel WFREE (IC, i )  above is the general element of the matrix W F R E E  that relates the free joint- 

angle accelerations and the active joint moments by OFREE = W F R E E T F R E E .  The result states that the 

joint-angle acceleration at a given joint k is a weighted sum of the active joint moments at all of the joints. 

The weighting kernel WFREE(k,i) represents the influence that the moment T ( i )  at joint i has on the 

acceleration O F R E E ( ~ )  at joint k. Because of this, the corresponding matrix W F R E E  will be referred to as 

the free influence matrix. It has been shown in [ l ]  that this matrix is the inverse of the composite multilink 

system inertia matrix. The next result [ l ]  shows how to compute this free influence matrix recursively. 

RESULT 1 0 . 2 .  TheinAuencematrixWFREE(k,i) for themultiarm open-chain system can becomputed 

by means of the following inward/outward sequence: 

Diagonal Sequence of Kalman Gains 

Solution of the discrete Riccati equation along the diagonal i = k of the square region 1 5 i ,  k 5 N 

produces a set of Kalman gains and joint inertiils. 
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P(0) = 0; G ( 1 , O )  = 0 

LOOP i = 1 , .  . . , N; 

G ( i , i  - 1) = +(i,i - 1 ) P ( i  - l ) H T ( i  - l )D-’ ( i  - 1)  

~ ( i )  = $(i , i  - 1 ) ~ ( i  - l )qT(i , i  - 1) + M ( i )  

D( i )  = H ( i ) P ( i ) H T ( i )  

END LOOP; 

(10.3) 

The gains G ( i ,  i - 1) and the joint inertias D(i )  are stored in this stage. 

Free Influence Matrix via Sequence of Vertical Sweeps 

The free influence matrix is evaluated in the triangular region 1 5 k 5 i 5 N via successive vertical 

sweeps of diminishing length. A vertical sweep is defined as a sequence generated by varying k from the 

diagonal in which k = i to the bottom edge of the triangular region in which k = 1.  The index i is held 

constant at  a fixed value for each vertical sweep. Successive vertical sweeps are generated by varying i 

repeatedly from i = N to i = 1. 

A(N + 1 )  = 0 

LOOP i = N ,  . . . ,l; 

E(i) = G T ( i  + 1 ,  i ) A ( i  + l )+( i  + 1 ,  i )  - D-l  ( i ) H ( i )  

A( ; )  = $ ( i + 1 , i ) A ( i  + l)+(i + 1 , i )  + H ( i ) D - ’ ( i ) H T ( i )  

A(;) = E T ( ; )  

LOOP k = i - 1 , .  . . ,1; 

W F R E E ( k , i )  = G T ( k +  1 , k ) X ( k +  1 )  

X ( k )  = $ T ( k  + 1 ,  k ) X ( k  + 1 )  

(10.4) 

END k LOOP; 

END i LOOP; 
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The free influence matrix elements W F R E E ( ~ , ~ )  in the triangular region 1 5 k 5 i 5 N and the co-state 

covariance A(1)  at joint 1 of each arm are the end result of this stage. The co-state covariance h(0) at the 

contact points can be computed by means of A(0) = q5T(l,0)A(l)+(l,0). 

The free joint-angle accelerations  FREE (k) produce the accelerations X F R E E  (k), which in the absence 

of the task object, would exist at the various joints k of the arms. These accelerations are of particular 

interest because they can be used to evaluate the tip contact forces that the arms impart to the task object. 

R E S U L T  10.3. The contact forces z(0) and the free tip accelerations X F R E E ( O )  are related by 
N 

Z(O) = R - ~ x F R E E ( o )  = + T ( j , ~ ) E ( j ) ~ ( j )  (10.5) 
j =  1 

in which R is defined by 

R = ATM-’(0)A + A(0) 

Proof :  Use Eq. (8.1), the state equations in the filtering stage, to obtain 
i - 1  

e F R E E ( i )  = D-’/’(i)[T(i) - H ( i )  $‘(i)j -I- 1)G( j  + l , j)T(j)]  (10.6) 
j=1 

Similarly, use Eq. (8.2)) the co-state equations in the smoothing stage, to obtain 
N 

x F R E E  (0) = +T (i, o)@ (~)D-”’(+FREE (i) (10.7) 

= cj,l Z j + l  . and recall that A(i)  

i=l 
N - 1  Substitute Eq. (10.6) into Eq. (10.7)) use the identity ELl 

is defined as A(;) = ~~(j,i)~T(j)D-l(j)~(j)+(j,i) to obtain the desired result. 

The next result determines the joint-angle accelerations 6 ( k )  for the closed-chain system in terms of 

the free joint-angle accelerations G F R E E ( ~ )  and the contact forces z(0). 

R E S U L T  

ations  FREE (k), and the contact forces z(0) are related by 

10.4.  The closed-chain multiarm joint-angle accelerations 6 ( k ) ,  the free joint-angle acceler- 

(10.8) 

(10.9) 

(10.10) 

I Substitute Eq. (10.10) into Eq. (10.9) and use Eq. (10.2). 
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R E S U L T  10.5. The closed-chain joint-angle accelerations 6 ( k )  are related to the active joint moments 

AW(k , i )  

T ( k )  by means of 
N 

O ( k )  = g p R E E ( k )  - C A W ( k , i ) T ( i )  
i= 1 

( k )  t,b ( k ,  i )  S ( i )  fi' ( i )  fi( k )  S (k) t,bT ( i ,  k )  ET ( i )  

(10.11) 

in which 

The matrix S ( i )  is defined as S ( i )  = t ,!(i,O)fl-l+T(i,O). This matrix satisfies the inward recursion 

LOOP i = 1,. . . , N ;  

S( i )  = t,b(i,i - 1)S(i - l)t,bT(i,i - 1) 

END LOOP; 

with the initial condition S(0) = R - l .  

Proof:  Substitute Eq. (10.5) into Eq. (10.8). 

R E S U L T  

related by 

10.6. The closed-chain joint-angle accelerations 6 ( k )  and the active joint moments T ( i )  are 

N 

6 ( k )  = x W ( k ,  i )T ( i )  

in which 

Proof:  Combine Results 10.1 and 10.5. 

This result states that the influence matrix for the closed-chain system can be obtained by subtracting 

a correction term from the free influence matrix of the open-chain system. The following result states how 

to compute this correction by means of a sequence of vertical sweeps. 

R E S U L T  

succession of vertical sweeps covering the upper triangular region 1 5 i 5 k 5 N: 
10.7 .  The closed-chain influence matrix W ( k , i )  can be computed by means of the following 

S(0) = [ATM-l (0 )A  + A(0)I-l 
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LOOP i = 1 , .  . . , N ;  

(10.12) 

LOOP k =  i ,  ..., N ;  

W ( k , i )  = W F R E E ( ~ , ~ )  - g ( k ) z ( k )  

z ( k  + 1) = +(k  + 1, k ) z ( k )  

END k LOOP; 

END i LOOP; 

A vertical sweep is a sequence generated by varying k from k = i to k = N ,  while keeping i constant. 

Successive vertical sweeps are produced by varying the index i along the diagonal from i = 1 to i = N .  

The free influence matrix elements W F R E E ( ~ ,  i )  are assumed to have been evaluated, using Result 10.2 for 

example, prior to start of the inward sequence. 

Proof:  This follows from the definition of A W ( k , i )  in Eq. (10.11). 

The closed-chain influence matrix can be evaluated by a three-stage inward/outward/inward sequence 

obtained by the combination of Results 10.2 and 10.7. These three stages are illustrated in Fig. 10.1. 

The first stage is governed by Eq. (10.3) and is illustrated in Fig. lO.l(a). It evaluates the Kalman 

gains along the diagonal of the square region defined by 1 _< k , i  _< N .  The first stage begins at the 

task-object contact points and goes to the base of the arms. There are several parallel sequences generated 

simultaneously, one for each arm. The gains are stored for use in the second stage. 

The second stage, shown in Fig. lO.l(b), computes the elements of the free influence matrix in the 

lower triangular region 1 <_ i <_ k 5 N .  This stage is described by Eq. (10.4). It can be decomposed 

into two closely related sequences: (1) a sequence that computes the co-state covariance along the diagonal 

i = k .  This sequence also computes the modified state-to-output map g(i) and the diagonal elements of the 

free influence matrix; (2) a sequence of co-states to compute the off-diagonal elements WFREE (k, i )  of the 

free influence matrix in the triangular region 1 5 k I i 5 N .  This triangular region is covered by a series 

of successive vertical sweeps. Each vertical sweep starts at the diagonal and proceeds toward the bottom 

edge of the triangular region. Each vertical sweep is one step shorter than the immediately preceding 

sweep. The second stage also computes the co-state covariance A(0) at the contact points between the 

arms and the task object. This matrix is combined with a term ATM-' (O)A, related to the inverse of the 

task-object inertia, in order to form the matrix S2 = ATM-l (0 )A  + A(0).  This matrix is used to initialize 

the third stage. 
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(a)Kalman Gains 
Along Diagonal 

1 I N 

(b)Free Influence Matrix by (c)Closed-Chain Influence Matrix 
by Sequence of Vertical Sweeps Sequence of Vertical Sweeps 

1 i N 

Fig. 10.1 Three-Stage Evaluation of Closed-Chain 

1 i N 

Influence Matrix 

The third stage, described by Eq. (10.12), is an inward sequence from the task object to the base of 

the arms. This sequence is illustrated in Fig. lO.l(c). It is initialized with the initial condition S(0) = fT1 
at the contact points. The stage has two related subsequences: (1) a diagonal sequence that evaluates the 

matrices S ( i )  along the diagonal and (2) a series of vertical sweeps that evaluate the off-diagonal elements 

W ( k , i )  in the upper triangular region 1 5 i 5 k 5 N. Each vertical sweep is one step shorter than the 

previous vertical sweep. Symmetry of the closed-chain influence matrix is used to evaluate the matrix 

in the lower triangular region 1 5 k _< i 5 N. This makes the results of the second and third stages 

compatible. 

11. RELATIONSHIP TO OTHER WORK 

The main contribution of this report is to extend to closed-chain multiple arms the results of (1-31 

on the application of spatially recursive filtering techniques to robot dynamics. The report also provides 

a more thorough analysis of the dual-arm problem, which is a special case of the results presented here, 

than an earlier dual-arm dynamics paper by the author [4]. 

Robot arm dynamics problems are easily solved using filtering and smoothing techniques[l-41. The 

techniques are effective and simple to use because they are based on a methodology [5-81 that has resulted 

from many years [7] of research on filtering and smoothing for linear state space systems. This foundation 

is exploited here to solve the multiple-arm forward dynamics problem. Two main results are obtained: 

recursive algorithms to compute joint-angle accelerations, task-object accelerations, and task-object contact 

forces from applied joint moments; and closed-form evaluation of the influence matrices that relate the 

applied moments and the resulting closed-chain accelerations and contact forces. As discussed in Sec. 
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9, the recursive multiarm forward dynamics algorithms can be built up modularly from the single-arm 

solutions of [I]. 

Multibody system dynamics have been studied by a variety of other methods [9-271. Typical appli- 

cations (in addition to robotics) are spacecraft and ground vehicles. For example, [9-111 use graph theory 

combined with Newton-Euler mechanics to analyze multibody systems of arbitrary topology. Similarly, 

[12] combines the methods from linear network analysis and mechanics to study very general collections of 

bodies. Much of the work on multibody dynamics has aimed at developing computer programs [13-151 for 

automated assembly of equations of motion. Perhaps the most comprehensive of these programs is in [15], 

which aims to analyze arbitrary systems of rigid and flexible bodies. In general, with a few exceptions, 

these methods are not recursive. The emphasis is on first evaluating a composite multibody system inertia 

matrix and then on inverting this matrix. 

I 

I 

Because of their focus on spatial recursions, [16,17] are in the same spirit as the present report. 

Reference (161 introduced a spatial algebra, related to screw theory, to analyze single-arm robot forward 

dynamics. The work of [17] extended this to closed-chain configurations. The single-arm algorithms of 

I [1,16] are similar, but not identical. The main difference is that [l] recognizes the equivalence of the forward 
I 

dynamics algorithms with the methods of filtering and smoothing. This equivalence allows the extension 

from open to closed chains to be performed within the context of solving two-point boundary-value problems 

in which the states and co-states are related at  one of the boundaries. Such mixed boundary-value problems 

and their corresponding solutions are very well understood [6]. This provides a very mature foundation to 

address the multiple-arm dynamics problem and to interpret the resulting algorithms. Such a foundation 

does not appear to be readily available for the approach of [16,17]. There, the recursive algorithms and 

their properties have to be rediscovered and redeveloped from general principles (mathematical induction, 

for instance) without the benefit of insights and relationships that emerge naturally from the filtering 

and smoothing methods [S-81. For example, casting the equation that accumulates spatial inertia as a 

Riccati equation, a step taken in [l] but not in 1161, makes it possible to use much of what is known, 

(i.e., numerical stability properties and approaches to retain symmetry of its solution) about this equation. 

Similarly, knowing that there is a quantity in the forward dynamics algorithms that is analogous to the 

innovations process of linear filtering theory [7,8] allows use of well-known properties of this process (its 

whiteness, for instance) to check for computational errors. Another example of the relationships provided 

by the filtering and smoothing approach is the predictor/corrector computation (see Sec. 9) of the contact 

forces as a weighted linear combination of the free tip D’Alembert forces and the task-object mass center 

bias force. 

I 

Significant results on closed-chain dynamics have emerged also from research in multilegged walking 
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machines and multiple manipulators [18-231. The dynamics of walking machines are very similar to those 

of multiple arms. The work in [18-231 appears to be the most advanced investigation to date of the issues 

of modeling, simulation, and control of a closed-chain mechanical system. It is more advanced in the sense 

that extensive investigations [2O-22] have been conducted on issues in control as well as optimal force 

distribution [23]. While control issues are beyond the scope of the present report, they will be addressed 

in the future. 

The dynamical analysis [18,19] underpinning the work in [20] is somewhat different from the analysis 

presented here. The main difference is that in [18,19] the forward dynamics problem is addressed somewhat 

indirectly by application of methods (such as recursive Newton-Euler) that have been developed primarily 

for inverse dynamics. In [18,19] the Newton-Euler approach of [24] is applied to each chain of a multiple- 

chain system to determine the coefficient matrices for a set of linear equations. These matrices are then 

combined to obtain a completely determined set of linear equations for the entire system. This approach is 

recursive in the sense that the coefficient matrices are evaluated by means of spatial recursions. Here, the 

forward dynamics problem is addressed more directly. The spatial recursions for each arm solve directly 

for the accelerations in terms of the applied joint moments, without the need to evaluate a set of coefficient 

matrices. The spatial recursions (involving Kalman filtering, smoothing, Riccati equations, etc.) for each 

arm are tailored to address the forward dynamics problem directly without going through the intermediate 

step of solving the inverse dynamics problem. 

However, although the filtering and smoothing techniques solve the forward dynamics problem for 

each arm recursively and directly, batch-mode inversion of a matrix (or, equivalently, solution of a set of 

linear equations) cannot be completely avoided. This inversion must take place in order to compute the 

contact forces at the task object, given the free tip accelerations that would result if the task object did not 

exist. This step occurs in Eq. (9.1). The set of linear algebraic equations that must be solved in this step 

is related, but not identical, to the set of equations that must be solved in (18,191. The main difference is 

that Eq. (9.1) is only of dimension 6 ( N A +  1)) whereas the dimension of the set of equations in [18,19] may 

be higher. For the special case of two arms in a closed chain, the computations involved in determining 

contact forces can be reduced even further by taking spatial recursions that go from the left arm base to 

the right arm base and then return, in contrast to the recursions used here that start and terminate at 

the task object [4]. However, the fact that the computations to determine contact forces are simpler than 

in [18,19] does not necessarily imply that the overall approach used here is necessarily faster than that of 

[18,19]. The reason is that the spatial recursions of [18,19] to solve the inverse dynamics problem for each 

chain are simpler than the filtering and smoothing recursions of this report, which require the additional 

burden of determining spatial inertias recursively. A comparison of computational performance between 
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the two approaches would be of interest but is outside the scope of this report. 

Solution of the forward dynamics problem is but the initial step toward addressing the issues of 

simulation and control. An important issue in analysis of closed-chain systems is that of reducing the 

number of degrees of freedom by combining the kinematic constraint equations with the equations of 

motion. This is investigated in [25-271, which also discuss the problems of numerical integration of the 

equations of motion. These problems have not been investigated as thoroughly for the forward dynamics 

methods of this report as they have for current methods. This report, however, provides the necessary 

analytical foundation for such an investigation. 

12. CONCLUDING REMARKS AND FUTURE DIRECTIONS 

This report solves the problem of multiple-arm forward dynamics by means of filtering and smoothing 

algorithms. The algorithms can be used to compute joint-angle and task-object accelerations, given a set 

of applied joint moments. They can also be used to compute in closed form the linear transformations from 

joint moments to accelerations. The algorithms are easy to understand and use because they are based 

on very well understood methods. Multiple-arm algorithms can be built up modularly from single-arm 

algorithms. This makes it relatively simple to implement the algorithms by reproducing existing algorithms 

and software. Additional steps are required only to implement the computation of contact forces, since 

these forces typically do not appear in single-arm forward dynamics problems. 

It is not the intent to advance the filtering and smoothing algorithms as being numerically superior to 

existing methods for solving closed-chain forward dynamics problems. The main benefit of using the algo- 

rithms is in the insight and physical understanding that they provide by organizing the forward dynamics 

computations into a well-established framework. 

This report provides the analytical foundation for future work in the following areas: 

1. Computational experimentation to establish numerical properties of the forward dynamics algorithms. 

2. Control algorithm development based on either the recursive algorithms of Sec. 8 or on the closed-form 

influence matrices of Sec. 10. 

3. Trajectory design and load-balancing algorithms. 
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